Guided wave damage characterization via minimum variance imaging with a distributed array of ultrasonic sensors

نویسندگان

  • James S. Hall
  • Paul Fromme
  • Jennifer E. Michaels
چکیده

Guided wave imaging with a distributed array of inexpensive transducers offers a fast and cost-efficient means for damage detection and localization in plate-like structures such as aircraft and spacecraft skins. As such, this technology is a natural choice for inclusion in condition-based maintenance and integrated structural health management programs. One of the implementation challenges results from the complex interaction of propagating ultrasonic waves with both the interrogation structure and potential defects or damage. For example, a guided ultrasonic wave interacts with a surface or sub-surface defect differently depending on the angle of incidence, defect size and orientation, excitation frequency, and guided wave mode. However, this complex interaction also provides a mechanism for guided wave imaging algorithms to perform damage characterization in addition to damage detection and localization. Damage characterization provides a mechanism to help discriminate actual damage (e.g. fatigue cracks) from benign changes, and can be used with crack propagation models to estimate remaining life. This work proposes the use of minimum variance imaging to perform damage detection, localization, and characterization. Scattering assumptions used to perform damage characterization are obtained through both analytical and finite element models. Experimental data from an in situ distributed array are used to demonstrate feasibility of this approach using a through-hole and two through-thickness notches of different orientations to simulate damage in an aluminum plate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasonic guided wave imaging for damage characterization

Guided wave imaging with a sparse array of inexpensive transducers offers a fast, reliable, and cost-efficient means for damage detection and localization in plate-like structures such as aircraft and spacecraft skins. As such, this technology is a natural choice for inclusion in condition-based maintenance and integrated structural health management programs. One of the implementation challeng...

متن کامل

Minimum variance guided wave imaging in a quasi-isotropic composite plate

Ultrasonic guided waves are capable of rapidly interrogating large, plate-like structures for both nondestructive evaluation and structural health monitoring (SHM) applications. Distributed sparse arrays of inexpensive piezoelectric transducers offer a cost-effective way to automate the interrogation process. However, the sparse nature of the array limits the amount of information available for...

متن کامل

Adaptive Dispersion Compensation for Guided Wave Imaging

Ultrasonic guided waves offer the promise of fast and reliable methods for interrogating large, plate-like structures. Distributed arrays of permanently attached, inexpensive piezoelectric transducers have thus been proposed as a cost-effective means to excite and measure ultrasonic guided waves for structural health monitoring (SHM) applications. Guided wave data recorded from a distributed ar...

متن کامل

Multi-Mode and Multi-Frequency Guided Wave Imaging via Chirp Excitations

Guided wave imaging has shown great potential for structural health monitoring applications by providing a way to visualize and characterize structural damage. For successful implementation of delay-and-sum and other elliptical imaging algorithms employing guided ultrasonic waves, some degree of mode purity is required because echoes from undesired modes cause imaging artifacts that obscure dam...

متن کامل

Fatigue Crack Monitoring via Load-differential Guided Wave Methods

Detection and localization of fatigue cracks is an important application for inspection and monitoring of civil, mechanical and aerospace structures, but assessment of such damage via ultrasonic guided waves can be problematic when cracks are tightly closed in the absence of applied tensile loads. Proposed here are load-differential methods, which compare signals at one load to those at another...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015